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ABSTRACT 
The contribution from the divergent part of the horizontal wind to the energy conversion between the vertical 

shear flow and the vertical mean flow has been computed using atmospheric data from the isobaric surfaces: 850, 
700, 500, 300, and 200 mb. The new calculations supplement earlier computations giving the energy conversion 
based on an assumption that the horizontal winds are non-divergent. 

It is found tha t  the contribution from the divergent part  of the horizontal wind normally is very small compared 
with the contribution from the non-divergent part. The former energy conversion is as a matter of fact generally 
not significantly different from zero. 

It is found tha t  energy conversion by the 
divergent wind component during this period was much larger and constituted a larger fraction of the total conversion 
than during any other period. 

The abnormal winter 1962-63 has been investigated separately. 

1. INTRODUCTION 
The present study reports on calculations of the contri- 

butions from the divergent part of the horizontal wind to  
the energy conversion between the vertical shear flow and 
the vertical mean flow. We have recently published 
(Wiin-Nielsen and Drake [5 ] )  the results of a study of 
the same energy conversion based on the assumption that 
the horizontal wind is non-divergent. It has been shown 
earlier (Wiin-Nielsen [3]) that the total energy conversion 
between the vertical shear flow and the vertical mean 
flow can be written as a sum of two contributions of which 
the first would be present in a quasi-non-divergent model 
while the second would be excluded in such a model but 
would be present in a model based on the primitive 
equations. 

~~ 
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The energy conversion which we are concerned with 
in this paper requires a knowledge of the horizontal diver- 
gence in the atmosphere or, alternatively, of the vertical 
velocity in a coordinate system with pressure as the 
vertical coordinate. Ideally, we would also require a 
knowledge of the observed horizontal wind. We have 
not had access to analyses of the horizontal wind field 
during the investigated periods, and it has therefore been 
necessary to make certain approximations which will be 
explained in the following section. 

A pilot calculation of the energy conversion in question 
was performed in the paper by Wiin-Nielsen [3]. This 
calculation was based 'on a minimum vertical resolution 
using only two isobaric surfaces (850 and 500 mb.) and 
a single vertical velocity a t  600 mb. One of the main 
purposes of this study is to  extend the pilot calculation 
to  a greater vertical resolution and to larger time periods 
than a single winter month. 
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It should be pointed out that the energy conversion 
described in this paper can be compared directly with 
the pilot calculation in [3]. Our calculations are, how- 
ever, not directly comparable to any of the energy quanti- 
ties described by Smagorinsky [2] simply because he only 
computes the total energy conversion between shear flow 
and mean flow. A calculation of the kinetic energy con- 
versions used by Smagorinsky [23 from atmospheric data 
will be presented in a later paper. 

The top level in this calculation is the 200-mb. surface. 
Since this surface is in the troposphere over a major part 
of the Northern Hemisphere, we have not included 
stratospheric data to any major extent in our calculations. 

2. FORMULATION OF THE CALCULATIONS 
Since the basic derivations were given in [3] it  will not be 

necessary to give them here. It suffices to state that the 
energy conversion which we want to compute is expressed 
by the integral 

1 
1 

27rg (sin cpz-sin cp,) (Ks, K M )  - 

The symbols appearing in (2.1) have the following 
meaning: KM is the kinetic energy of the vertically 
averaged flow, Ks is the kinetic energy of the vertical 
shear flow, v is the horizontal wind vector, g is gravity, 
X is longitude, cp is latitude, and p is pressure. A sub- 
script M refers the vertical mean flow, while a subscript 
S refers to the vertical shear flow. The vertical average 
is defined by the integral 

where p o  is a standard value of the surface pressure. The 
subscript S is then defined by the relation: 

( )s=( I-( )M. (2.3) 

The energy conversion symbol CD(Ks, K M )  means the 
conversion by the divergent part of the wind (subscript D) 
from the kinetic energy, Ks, of the shear flow to the kinetic 
energy, KM, of the vertical mean flow. 

The integral (2.1) is evaluated over a region between 
the two latitude circles cpl and (pz and between the top of 
the atmosphere, p=O, t o  the ground, p=po. It should 
furthermore be pointed out that (2.1) is written as an en- 
ergy conversion per unit area. The unit of CD(Ks, KM) is 
therefore in the MTS-system: kj. m.-2 set.-' 

The major problem in evaluating the integrand in (2.1) 
is to obtain the divergence, V . vs. The divergence of the 
vertically averaged flow, V vM, is zero in our calculations 
simply because we have assumed that the vertical velocity 
w=O for p = p o .  We have therefore that V.v=V.vs. The 
divergence, V.v, has in this calculation been obtained 

from a knowledge of the vertical velocity through the use 
of the continuity equation: 

(2.4) 

The vertical velocities were, in turn, obtained from a 
solution of the so-called w-equation which is derived from 
the vortidty equation and the thermodynamic equation 
by elimination of the time derivatives. We have used 
the vorticity equation in the following simple, but con- 
sistent, form: 

where 3. is the stream function, f the Coriolis parameter, 
fo a standard value, [=V2+ the vorticity, while the other 
symbols have been defined earlier. We note that the 
vertical advection of vorticity and the term expressing the 
turning of the vortex tubes (the so-called “twisting” or 
“tipping” term) have ,been neglected, as well as all 
reference to friction. 

The thermodynamic equation was used in its adiabatic 
form 

in which it has been assumed that b$/dp=f;’bbldpr 
For the justification of this assumption, see Phillips [l]. 
u= -&I In 6/ap  is a measure of static stability,-and it has 
for consistency beenassumed that u is a functionof pressure 
only, u = u@). 

By differentiation of (2.5) with respect to  pressure and 
by applying the Laplacian operator to (2.6) we obtain after 
subtraction the w-equation : 

which is the equation which has to be solved for w under 
proper boundary conditions. The horizontal wind appear- 
ing on the right-hand side of (2.7) has been approximated 
by the non-divergent wind v=kXV#, where k is a vertical 
unit vector. The streamfunction, $, was determined by 
the method described in the earlier paper by Wiin- 
Nielsen and Drake [5], giving as results the stream- 
function a t  the levels 200, 300, 500, 700, and 850 mb. 
These levels are indicated as odd levels in figure 1. With 
the streamfunctions at  the odd levels in figure 1 it is 
possible to compute the values of the forcing function 
(the right-hand side of (2.7)) at the even levels in figure 1 
approximating derivatives with respect to pressure by 
centered finite differences. The left-hand side of equa- 
tion (2.7) can furthermore be approximated a t  the even 
levels (p=2, 4, 6, and 8) by centered finite differences 
using the boundary conditions w=O for p=O and p = p , .  

I t  should be noted that the boundary condition at  the 
lower level can be improved by considering the effects of 
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FIGURE 1.-The vertical grid used in the calculations. The symbols 
indicate the quantities available at the different levels. 

mountains and friction. However, in the derivation of 
the basic formula (2.1) it  was assumed that the simplified 
boundary condition w=O, p = p ,  applies, and we should 
therefore for consistency use the same condition in the 
calculation of w from (2.7). a=u(p)  appearing as.& co- 
efficient to V2w in (2.7) has values derived from a standard 
atmosphere. The values of u are needed at  the even 
levels (q=2,4 ,  6, and 8) in figure 1. Standard relaxation 
procedures were used to  solve equation (2.7). 

The next problem connected with the evaluation of the 
integrand in (2.1) is the computation of the scalar product 
v M .  V S = U ~ U ~ + V ~ V ~ .  In the present calculations we 
have approximated the zonal and meridional wind 
components by the non-divergent assumption; i.e. 

where a is the radius of the earth. This approximation 
was used for both the vertically averaged wind vM and the 
vertical shear wind vs. From the procedures outlined 
above it can be seen that our computational procedure 
can be considered as the first step in an iterative procedure. 
Having the streamfunction at  the odd levels we compute 
w at the even levels from (2.7). We could next compute 

the divergence V .  v from the continuity equation a t  the 
odd levels. However, we have 

v2x=v . v  (2.9) 

where x is the velocity potential. Solving equation (2.9) 
a t  the odd levels, we can obtain the velocity potential and 
therefore the divergent part of the wind vx=Vx.  These 
wind components could then be added to the original 
non-divergent winds. The resulting total wind could then 
be used to compute a new value of w from (2.7), etc. We 
have not used this procedure partly because a test calcula- 
tion showed no major differences in the vertical velocities, 
but mainly because we, by using the cyclic calculation, 
go outside the framework of the quasi-non-divergent 
model. A more general equation than (2.7) for the 
vertical velocity should be used in such a case. 

After having obtained the vertical velocities from (2.7) 
we computed the divergence from a tinite difference form 
of (2.4) 

where q refers to the counter appearing in figure 1.  It is 
now possible to compute the integrand in (2.1) at all the 
odd levels. We may therefore write: 

where 

[ (VM * V s , q ) D q  COS (2.12) 

We are next going to express the integral (2.12) in the 
wave number regime. In order to accomplish this result 
we make a Fourier analysis of the basic streamfunction 
data. The procedure which we have followed is copied 
from our earlier paper [5]. 

It is seen that the integrand in (2.12) consists of two 
terms both of which are products of three factors. We are 
therefore dealing with two integrals of the type which were 
treated in general in appendix A of Wiin-Nielsen and Drake 
[5]. The computational method which we have used in 
expressing (2.12) in the wave number regime: 

N 

n = l  
Cq(KS, K M )  =cp K S ,  Kaf) +E cy (Ks, K M )  (2.13) 

can therefore be obtained without modification from these 
general formulas. 

Before we proceed to describe the results of the computa- 
tions evaluating (2.12) and (2.13) from actual data it is 
worth while to consider the physical and kinematical inter- 
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January 1962 _._._.___._._._._ 
April 1962 __...__.____.__.___. 
July 1962 ...._.__..____..__._. 
October 1962. ... . . - - - _.__ - _. 
December 1962 _.__.__.__..... 
January 1963 _._.__.__.__.._.. 

pretation of (2.1). We note first of all that the velocity 
vector V, in general will be approximately equal to the 
wind somewhere in the middle troposphere. At the same 
level we will have vs=O by definition. For this reason 
alone we would expect small contributions to the integral 
(2.1) from the mid-tropospheric levels. It is furthermore 
well known that there is a general tendency to have a level 
of non-divergence, V. vs=O, in the mid-troposphere. This 
fact is a second reason to expect small contributions from 
levels around 500 mb. 

We are next going to consider the contribution from the 
upper and lower parts of the troposphere. If the wind 
does not turn too much with height we will find that the 
vectors vM and vs form an angle less than 90' in the upper 
troposphere and that v,.v, therefore will be positive. 
Under the same conditions we will expect that vM and vs 
will tend to oppose each other in the lower levels of the 
troposphere, and that vM.vS will be negative a t  such 
levels. On the other hand, if we have divergence a t  the 
higher levels of the troposphere we will in general have 
convergence at  the lower levels and vice versa. It is thus 
seen that there will be a general tendency to get contribu- 
tions of the same sign from the upper and lower parts of 
the troposphere. The contribution will be negative a t  
locations where we have upper level divergence and lower 
level convergence, while a positive contribution will be 
obtained with the opposite arrangement. 

The description of the results, given in the next section, 
will confirm the qualitative reasoning given above. 

46.5 
28.8 
12.4 
29.6 
43.2 
41.6 

3. RESULTS OF THE ENERGY CONVERSION 
CALCULATIONS 

The calculations described in section 2 have been 
carried out for six different months: January, April, July, 
October, December, 1962, and January 1963. The avail- 
able data will in general permit us to make two calculations 
per day, corresponding to the observation times at  00 and 
12 GMT. Occasionally, we have had missing data on the 
magnetic tapes giving the height analyses of the isobaric 
surfaces, but the percentage of such cases is very small. 

We shall first consider the mean values for each of the 
six months for which calculations have been made. The 
averaged values are reproduced in table 1 of this paper. 
For easy reference we have also reproduced the correspond- 
ing results for the energy conversion CND(Ks,K,) from [5].  
It is seen from table 1 that CD(Ks,KM) is small compared 
to CND(Ks,KM) for all five months for which calculations 
have been made during 1962. The percentage varies 
from month to month but is less than 11 percent during 
all months in 1962. One would expect this result from 
the quasi-geostrophic theory and from the fact that this 
theory has been used for the calculation of the vertical 
velocities which form the basis of our calculation of 
CD(K8,KM). One can as a matter of fact consider the 
present calculation as a test of the validity of the quasi- 
geostrophic theory because it was shown in the original 
study [3] that only C~D(K~,K~), but not CD(Ks,KM), 

0.31 
1.66 
0.62 
2.66 
4.76 

14.58 

46.8 
30.5 
13.0 
32.3 
48.0 
56.2 

0 .7  
5.8 
5.0 
9.0 

11. 0 
35.0 

makes a contribution to the energy conversion between 
the. vertical shear flow and the vertical mean flow in a 
quasi-geostrophic model. The results relating to  the 
months from the year 1962 may therefore be considered 
to indicate that the quasi-geostrophic theory was valid to 
the 10 percent level of accuracy during this time period. 

The results from January 1963 are very different from 
the others. We tind for this month that CD(Ks, KM) is 
more than $5 of CND(Ks, KM).  One must be careful in 
drawing conclusions from these numbers. It seems, 
however, justified to state that the quasi-geostrophic 
theory is a poor approximation to the atmospheric flow 
during this period, simply because some of the terms which 
have been neglected in the quasi-geostrophic theory had 
an appreciable magnitude on the average during the month 
of January 1963 even when they are evaluated using 
results (the vertical velocities) from the quasi-geos trophic 
theory. I t  is, on the other hand, difficult to justify that 
our calculations of CD(Ks, K,) measure this energy con- 
version in a realistic way. We must emphasize that the 
vertical velocities which play such an important role in 
our calculations were computed using the quasi-geo- 
strophic theory. Furthermore, we have neglected the 
influence of diabatic heating and friction in our calcula- 
tions. I t  is known that these factors may give significant 
contributions to the fields of vertical velocity and diver- 
gence on the largest scales of atmospheric motions. 

The spectra, giving CD(Ks, K M )  as a function of wave 
number, for the different months show that the major 
contribution to it comes from the small wave numbers. 
These spectra are rather irregular without any distinct 
maxima and minima. It is therefore not worthwhile t o  
reproduce all of them in this paper. I t  suffices to give a 
couple of examples. We have selected the spectra for 
January 1962 and January 1963, given as figures 2 and 3, 
respectively. These figures show that we have a large 
contribution from wave number 0 (the zonal currents), 
especially in January 1963. It is furthermore seen that 
wave number 3 gives a negative contribution during both 
months. However, this is not always the case. The 
spectra for the other months (not reproduced) show that 
the contribution from this particular wave number just 
as often is positive. 

I t  is of some interest to find the contributions from the 
zonal currents and the eddies separately. This informa- 
tion is given in table 2 for the six months mentioned earlier. 

i 
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+1.66 
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+5.38 

FIQURE 2.-The energy conversion CD(KS,  K M )  as a function of 
The spectrum shows averaged results for January wave number. 

1962. Unit: lO-4kj. m.-2 sec.-1 

0.31 
1.66 
0.62 
2.66 
4. 76 

14.58 

It is seen that a considerable fraction of the total 
energy conversion C D ( K s , K M )  is connected with the zonal 
currents. As a matter of fact, we find that about $5 of 
CD(Ks,KM) during the month of January 1963 is found in 

The mean values which we have calculated for 
CD(Ks,KM) for the different months are small compared 
to CND(Ks,KM) as can be seen from table 1. The only 
exception in the present sample is January 1963. The 
statistical significance of the monthly averages can be 
found by computing the standard deviations. These 
values are found in table 3. 

C D ' o ' ( & , K M ) .  

January1862 .................................................. 
April 1962. .................................................... 
July 1962 ...................................................... 
October 1962. ................................................. 
December 1962. ............................................... 
January 1.. ................................................. 

TABLE 2.-Monthly mean values of CD@:(KS, K.y) and ZC~cfl)(Ks,  K M )  
for the months indicated. Unat: l P 4 k j .  m.2 sec.-l 

I I I 

0.31 
1.66 
0.62 
2.66 
4.76 

14.58 

January 1962 .............................. 
April 1962 ................................ 

October 1962 .............................. 
December I962 ............................ 
January 1963 .............................. 

July 1962. ................................ 

1.45 
0.72 
0.33 
1.00 
2.75 
9.20 

Co ( K s ,  K Y ) ,  JANUARY 1963 

Unit: kj.rn:*se<' 

FIQURE 3.-The energy conversion C D ( K ~ ,  KM) as a function of 
The spectrum shows averaged results for January wave number. 

1963. Unit: lO-"j. m.+ sec.-l 

It is seen that the standard deviations in the cases from 
the year 1962 are larger than the mean values, a fact 
which indicates that the mean values are not significantly 
different from zero. The case of January 1963 is again 
an exception in which the standard deviation is somewhat 
smaller thah the mean value. 

It seems surprising that CD(Ks,KM) is so small during 
January 1962 and is even less than the value for July 1962. 

TABLE 3.-Monthly mean values and standard deviations of 
CD(KS, K M )  in  the units, lP4 kj. m.--2sec.-1 

Standard 

7.3 
4 .0  
1.6 
3. 7 
6.0 

11.3 



6 MONTHLY WEATHER REVIEW Vol. 94, No. 1 
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Mean Value: 2.66 x k j m 2  set.? 
FIGURE 4.-The energy conversion CO(&, RM) as a function of 

The abscissa is days of the month and time for October 1962. 
the ordinate CD(&, K,) in units of 1Pkj .  m.-z see.-] 

-3t October 1962 

FIGURE 6.-The contribution to Cn(R8, K,) as a function of 
latitude forOctober 1962. Unit: 10-6kj. m.-z-sec.-l 

I January 1963 

FIGURE 7.-The contribution to CD(KS, K M )  &9 a function of 
latitude for January 1963. Unit: 10-5kj. m.-z set.-' 

-10 L ' Mean Value: 14.58 x le4 kjm.2 sec;' 

FIQURE 5.-The energy conversion CD(Ks, Ky) as a function of 
time for January 1963. Coordinate as in figure-4. 

One would expect to find larger values during winter than 
during summer. However, it should be borne in mind 
that all the values for the year 1962 are insignificantly 
different from zero, and that no particular significance 
can be attached to the numerical values. To give the 
reader some idea about the variation throughout a month 
we have reproduced the values of CD(Ks,KM) as a function 
of time for the months of October 1962 and January 1963 
in figures 4 and 5,  respectively. It is seen that the energy 
conversion remains of one sign during rather long periods 
of time. One can furthermore observe that there is 
considerable variation in the values of the energy con- 
version from one day to the next. 

We shall finally comment on the conkibutions to 
CD(Ks,KM) from different pressure levels and Merent  
latitudes. In  figures 6 and 7 we have reproduced these 
contributions as a function of latitude. It is seen that 
we have small positive contributions in the very high 

latitudes, negative contributions in a rather broad band 
of latitudes around 60°N., and the major positive con- 
tribution from the subtropical latitudes. One of the rea- 
sons for the very high value in January 1963 (tig. 7) is 
the large positive contribution centered around 30°N. 

An even greater insight into the contributions from the 
different levels in the atmosphere can be gained from 
figures 8 and 9 giving the contributions to CD(Ks,KM) a s  
a function of latitude and pressure. The tendency to have 
very small contributions from the mid-troposphere and to 
have the same sign in the upper and lower parts of the 
atmosphere can clearly be seen in the two figures. 

Combining the results shown in figures 6, 7, 8, and 9 
with the reasoning given at  the end of section 2 of this 
paper we can deduce the average position of the major 
regions of convergence and divergence in the atmosphere. 
It is seen that we have divergence in the lower levels and 
convergence in the higher levels in the subtropical latitudes 
(20ON. to about 40'N. in January 1963, 20°N. to about 
50'N. in October 1962). North of this region we find 
convergence in the lower levels and divergence in the 
higher levels, while the situation in the very high latitudes 
is reversed. 
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FIGURE 8.-The contribution t o  CO(li , ,  &) as a function of latitude and pressure for October 1962. Unit: IO-*kj. m.--2 set.-' cb.-' 

I January 1963 

30 .Ot  -50 -100 -100 0 2OO."'kOO 600 400 200 -.' e---- --/ 

/ ; / f 

I I I 
50 - 50 5b 

90 85 80 75 70 65 60 55 5 0  45 40 35 30 25 20 

LATITUDE 

FIGURE 9.-The contribution to  CD(&, K,) as a function of latitude and pressure for January 1963. Unit: 10-Bkj. m.-2 sec.- 1cb.-1 

4. CONCLUDING REMARKS 
The calculations of the divergent part of the energy 

conversion C(K,,K,) show that we normally have a 
small ratio CD(K,,K,)/C,D(K,,K,). This is in agree- 
ment with the quasi-geostrophic nature of the atmos- 
pheric circulation. Our calculations show furthermore 
that CD(Ks,K,) is not significantly different from zero 
during most of the time periods which have been consid- 
ered. The results from January 1963 turn out to be 
rather different from the other results. This is in agree- 

705-456 0 - 66 - 2 

ment with computations of many other energy conversions, 
in particdm the e n e w  conversion from eddy kinetic to 
zonal kinetic energy described by the authors in [4].  

The main uncertabty connected with the calculations 
described in this paper is the approximations which it is 
necessary to mcake in order to compute the vertical 
velocities. This uncertainty is common in the calculation4 
of several other energy conversions in the atmosphere, in 
particdm the energy conversion from available potenial 
energy to kinetic energy. It is known that the adiabatic, 
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frictionless vertical velocities computed, from equation 
(2.7) may be in considerable error because of theneglect 
of diabatic heating and friction. The results obtained in 
this paper should therefore be considered as a e s t  approxi- 
mation to  the energy conversion CD(Ks, KM), and the 
calculations should be repeated when it is possible to 
incorporate the neglected effects. Even if our results 
may have errors resulting from the factors mentioned 
above, they axe nevertheless a measure of the goodness 
of the quasi-geostrophic theory in its simplest form. 
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